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Computing in the Jacobian of a Hyperelliptic Curve 

By David G. Cantor* 

Dedicated to Daniel Shanks on the occasion of his 70th birthday 

Abstract. In this paper we present algorithms, suitable for computer use, for computation in 
the Jacobian of a hyperelliptic curve. We present a reduction algorithm which is asymptoti- 
cally faster than that of Gauss when the genus g is very large. 

1. Introduction. In [9], Shanks introduced the use of the class group of a quadratic 
number field as a tool in computational number theory and provided an efficient 
algorithm for multiplying (composing) ideal classes. A number of improvements 
have since occurred, and new algorithms using the class group have appeared. See, 
for example, Schnorr and Lenstra [7]. More recently, Lenstra [4] has shown how to 
use the group of points on an elliptic curve, defined over a finite field, in a 
factorization algorithm. Elliptic curves are the "genus 1" case of the Jacobian groups 
of hyperelliptic curves. The latter are the analogues of the class groups of quadratic 
number fields (henceforth we shall say simply "class group"). 

While many explicit formulas for addition on an elliptic curve have appeared (for 
practical examples, see Chudnovsky and Chudnovsky [2], and Montgomery [5]), and 
numerous algorithms for computing in the class group of a quadratic number field 
and number fields of higher degree have appeared (see, for example, Lenstra [4], 
Shanks [9], and Williams, Dueck, and Schmid [10]), explicit formulas for addition in 
the Jacobian group of a hyperelliptic curve (henceforth we shall simply say Jacobian), 
which are suitable for computation, do not appear to have been published. The 
purpose of this paper is to present such algorithms. While computation in the 
Jacobian is entirely analogous to computation in the class group and consists of 
"composition" followed by " reduction", we shall present formulas which are 
(asymptotically) more efficient than those used for the class group. In particular, our 
reduction procedure will use the Euclidean algorithm and be faster (when the genus 
is large) than the classical reduction procedure due to Gauss. A modification of it 
can be used for computation in the class group of an algebraic number field. 

By a hyperelliptic curve we shall mean, as usual, a curve C (with a model) of the 
form V2 = f (u), where f (u) is a polynomial of degree 2g + 1, with all roots distinct, 
and with coefficients in a field K of characteristic + 2; here g is a positive integer 
(the genus of the the curve C). 
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2. Preliminaries. We summarize here the facts about the Jacobian of C that we 
shall use; see, for example, Mumford [6] for more details. Note that Mumford works 
over the field of complex numbers; however, the results that we use, and their 
proofs, are valid over any algebraically closed field of characteristic 0 2 (indeed, 
they are true in fields of characteristic 2, also, if appropriate modifications of the 
statements are made). By a point P on C we mean a pair (x, y) of elements of A 
(the algebraic closure of K) satisfying y = f(x) or one other element, convention- 
ally denoted oo. If a is an automorphism of A, P0 denotes (x0, y') (with oo? 
defined to be oo). A divisor D of C is a finite formal sum of the form D = 2i miPi, 
where the mi are integers and the Pi are points of C; the degree of D is Ei mi. We 
define D' =i miPi? and say that D is >? 0 if all of the mi are > 0. 

Since v2 = f(u) on the curve C, any polynomial p = p(u, v), when considered as 
a function on C, can be written in the form p = a + bv, where a = a(u) and 
b = b(u) are polynomials in u. If p vanishes at the point (x, y) (so that y2 = f(X)), 

then the order of the zero (x, y) of p is the exponent of the highest power of 
(u - x) which divides a 2 - b2f. 

By a function on C we shall mean a rational function of the form h = h(u, v) = 

p/q, where p = p(u, v) and q = q(u, v) are polynomials in K[u, v] such that 
q(u, v) is not divisible by v2 - f(u). The function h has a finite number of zeros and 
poles on C, and we associate with h its divisor (h) = Ei miPi, where the Pi are the 
zeros and poles of h (on C) with multiplicities mi (positive if Pi is a zero of h and 
negative if it is a pole); a divisor of a nonzero function, such as (h), is called 
principal; a principal divisor has degree 0. The divisors form an additive group D 
(under formal addition: EimiPi + EiniPi = Ei(mi + ni)Pi) and the divisors of 
degree 0 form a subgroup Do. We define gcd(Xi miPi, Ei n i P) to be Ei min(m i, n i)Pi. 
The principal divisors form a subgroup P of Do, and the Jacobian J of C is defined 
to be the quotient group J = DO/P. This is analogous to the definition of the class 
group of an algebraic number field as the quotient of the group of ideals modulo 
group of principal ideals. If D1 and D2 are principal divisors, we shall write D1ID2 
(mod P) if D1 is equivalent to D2 in the Jacobian (i.e., D1 -D2 e P). 

If P = (x, y) is a point on the curve, then so is P' = (x, -y). The points P and P' 
are the zeros of the function (u - x), which has a double pole at oo. Thus the divisor 
P + P'-2 - oo 0 (modP) or -P' P - 2 oo (modP). It follows that each 
element of J can be represented in the form 

r 

D= P P1-r ro 
i=l 

with the following condition satisfied: If the point Pi = (xi, yi) appears in D, then 
the point Pi' = (xi, -yi) does not appear as one of the Pj (j * i). This implies, in 
particular, that points of the form (x, 0) appear at most once in D. We shall call 
such a divisor semireduced. It follows from the Riemann-Roch Theorem [3] that each 
element of J can be represented uniquely by such a divisor, subject to the additional 
restriction that r < g. Such divisors will be called reduced. Any semireduced divisor 
D can be represented uniquely by a pair of polynomials (a(u), b(u)) satisfying 
D = gcd((a), (b - v)), where a = a(u) = FH(u - xi) and b = b(u) is the unique 
polynomial of degree < deg(a), satisfying b(xi) = yi (1 < i < r), with appropriate 
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multiplicity when the point Pi appears more than once in D. Explicitly, if Pi appears 
k times in D, then b - y1 must be divisible by (u - xi)k. This is equivalent to 
requiring that b2 - f be divisible by a. We shall denote this divisor D by div(a, b). 
Note that D is reduced if and only if deg(a) is < g. If we define c = (b2 - f )la, 
then the representation (a, b, c) of D is analogous to the similar representation of 
the quadratic form aX2 + 2 bXY + Cy2 with discriminant f. If a and b have 
coefficients in K, we shall call the divisor D rational over K. If K is perfect, then D 
will be rational over K if and only if D = D' for all automorphisms a of A over K. 
The set of principal divisors which are rational over K forms a subgroup of the 
group of principal divisors; its image JK in J is a subgroup of J, and it is JK which is 
useful in computational number theory. If the genus g = 1, then a is a linear 
polynomial u - x and b is a constant y; in this case, J is isomorphic to C, and the 
reduced divisor (a, b), considered as an element of J, corresponds to the point (x, y) 
on C (which is an elliptic curve); the elements of JK correspond to those points of C 
with coordinates in K. Henceforth, we shall not distinguish between an element of J 
and its reduced representative div(a, b). 

To add two elements D1 = div(al, bl) and D2 = div(a2, b2) of J, we proceed as in 
the classical composition of quadratic forms. We shall obtain a (semireduced) 
representative for the sum of the two divisors and then reduce it. 

3. Composition. We will describe the algorithm and then verify its correctness. 
Use the Euclidean algorithm twice, first to compute do = gcd(al, a2) and then 

d = gcd(do0 bl + b2) = gcd(al, a2,bl + b2) and polynomials hI, h2, h3 satisfying 

(C1) d = h1al + h2a2 + h3(b1 + b2). 

(Note that "gcd(aI,a2)' is used here to denote the ordinary greatest common 
divisor of the two polynomials a, = al(u) and a2 = a2(u), as polynomials in u; 
earlier, the term "gcd" was used to denote the greatest common divisor of two 
divisors on C. The meaning will be clear from the context.) Then compute 

(C2) a = aja2/d2 

and 

(C3) b (haAb2 +h2a2b, + h3 (blb2+ f))/d (moda),deg(b) < deg(a). 

Then div(a, b) is semireduced and represents the divisor sum (in the Jacobian); cf. 
Schnorr and Lenstra [7], and Shanks [9]. We shall indicate some simplifications 
shortly. 

We first verify correctness. As usual, if c = c(u) is a polynomial in one variable u, 
then ordx(c) denotes the largest integer r for which (u - x)r divides c. 

Using (C1), we can rewrite (C3) as 

b (b2(d - h2a2 - h3(b1 + b2)) + h2a2b, + h3(blb2 + f ))/d 
(C3a) --b2 + h2a2(b1 - b2)/d + h3(f - b2)/d. 

Since f - b2 0 (mod a2), the division in formula (C3) is exact, so that b is a 
polynomial. We can multiply (C3a) by (b1 + b2) and simplify to obtain 

(b1 + b2)b = blb2 + f +(hlaI(b 2-_f) + h2a2(bl - f ))/d 
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or, since v2 = 

(b1 + b2)(b - v) = (b1 - v)(b2- v) 

(C3b) + (hal(b2 -f) + h2a2(bl -f))/d 

Case A. Suppose that the point P = (x, y) has multiplicity rh >, 0 in Dh, h = 1, 
2, and if y # 0, then -P = (x, -y) does not occur in either. We will show that 

(i) ordx(a)= r, where r= r, + r2 if y # 0; while r is O or I and -r + r2 
(mod 2) if y = 0, and 

(ii) ordx(b - y) is > r. 
There are several subcases: 

1. The multiplicities r, = r2 = 0. In this case it follows from Eq. (C2) that 

ordx(a) = 0. 
2. At least one of rl, r2 is positive and y 0 0. In this case ordx(do) = 0 and 

hence, by (C2), ordx(a) = r, verifying (i). Each term on the right of (C3b) has order 
> r and since bl(x) + b2(x) = 2 y 0 0, we obtain ord,(b - v) is > r. 

3. Both rl, r2 are positive and y = 0. In this case r, = r2-1; ordx(al)= 

ordx(a2) = ordx(d) = 1. By (C3), a(x) 0 0, verifying (i) and (ii) with r = 0. 
4. Exactly one of rl, r2 is positive and y = 0. In this case d(x) 0 0. Hence 

ordx(a) = 1 and, as in subcase 2, each term on the right of (C3b) has order > 1 and 
since bl(x) + b2(x) = 2 y * 0, we find that ordx(b - v) is > 1, verifying (i) and 
(ii) with r = 1. 

Case B. Now suppose that P = (x, y) has multiplicity r, > 0 in D1 and -P = 

(x, -y) has multiplicity r2> O in D2. Put r = Jr, - r21. We will show that 
(i) ordx(a) = r, and 

(ii) if r, >? r2, then ordx(b - y) is > r while if r, < r2, then ordx(b + y) is > r. 
For ordx(b1 + b2) > min(rl, r2) and ordx(d) = min(rl, r2); hence ordx(a) = r, + 

r2- 2 - min(rl, r2) = r, verifying (i). Assume, without loss of generality, that r2 > r1. 
Now ordx(b2 - y) > r2, ordx(h2a2(b1 - b2)) = r2, and ordx(h3(f - b2)/d) > r2 
- r1. Hence using (C3), ordx(b - y) is > r, verifying (ii). 

If classical algorithms are used, then the computation of the product of two 
polynomials of degree m and the computation of their gcd each take O(m2) field 
operations, while if modern "fast" algorithms are used, then the computation of 
their product takes 0(m log m) operations and the computation of their gcd takes 

O(m (log m ) 2) operations [1]. It follows that the composition algorithm takes 
O(g(log g) 2) operations. 

For computational purposes, in the important special case when gcd(al, a 2) = 1 
(which is extremely likely if the ground field K is large and a, and a2 are the 
coordinates of two randomly chosen elements of the Jacobian), we find that d = 1 
and (C3) may be replaced by the simpler 

(C4) b hjajb2 + h2a2b, (mod a), deg(b) < deg(a), 

or equivalently, 

(C4a) b b2+ h2a2(b1-b2) (moda), deg(b) < deg(a). 

in the special case when div(al, bl) = div(a2, b2) ("doubling" an element of J), we 
may choose h2 = 0 and then (C3) simplifies to 

(Cs) b- h1alb1 + h3(b I + f )/d (mod a), deg(b) < deg(a), 
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or equivalently, 

(C5a) b b1 + h3(f- bl)/d. 
4. Reduction. We describe algorithms for reducing the semireduced divisor D 

represented by div(a, b) to the reduced form described above, in which deg(a) is 
< g. The classical Gauss algorithm for reducing quadratic forms may be applied 
here. We may replace D = div(a, b) by the equivalent divisor E = -((b - v) - D) 
= div(a', b'), where a' = (f - b2)/a, b' -b (mod a'), and deg(b') < deg(a). 

If deg(a) = m, deg(b) = n, with m > n, then deg(a') = max(2g + 1, 2) - m. If 
m > g + 1, then deg(a') < 2(m - 1) - m = m - 2 and if m = g + 1, then deg(a') 

< g. 
We may apply this reduction method repeatedly until deg(a') < g. In the worst 

case (which, both in probability and in common calculation, is the most common 
case) where all inequalities are, in fact, equalities, and deg(a) is initially 2 g, this 
method of reduction requires g long divisions (to compute the polynomials a' and 
b'). Explicitly, the computation of a' requires division of a polynomial of degree 
2 m - 2 by a polynomial of degree m and the computation of b' requires division 
of a polynomial of degree m by a polynomial of degree m - 2. Here m is initially 
2 g and decreases by 2 until it is < g. If classical algorithms are used, then this 
reduction requires (asymptotically) 0(g3) field operations, while if modern "fast" 
algorithms are used, then it requires 0(g2 * log g) field operations. 

We now describe a new reduction algorithm which is (asymptotically) faster by a 
factor of g. We shall do this by finding a function of the form c - dv, where c and d 
are nonzero polynomials, such that the divisor E = -((c - dv) - D) is reduced. We 
must choose c and d so that E is > 0. This will be true if a divides (C2 - d2f). 
Since a divides (b2 - f ), it will divide (C2 - d2f ) if c db (mod a). We will choose 
c and d so that deg(c) < (m + g)/2 and deg(d) < (m - g - 1)/2; then E will 
have degree < g. 

If deg(b) < (m - g - 1)/2, then we may put c = b and d = 1. Otherwise, we 
shall obtain them by means of the Euclidean algorithm. To this purpose, define 
sequences of polynomials a 2, a-,, ao,... and q0, qj, q2, ... , by setting 

a 2= a, a= b, 

and successively for i = 0, 1, 2,.. ., setting 
ai-2= -qiai-l + ai, 

where qi is a polynomial of degree (deg(ai-2) - deg(ai -1)), and deg(a1) < deg(ai -1). 
(Use of the minus sign in the above formula defining qi will simplify subsequent 
formulas.) Now define 

r-2= 1, r-1 = ? S-2 =O ? -1 =1 

and inductively for i = 0,1, 2,... , define 
ri= qiri-1 + ri-2 si= qisi-l + Si-2- 

Then 

a_2 = r 2a + s2b, a-, = r _a + s lb, 

and, inductively for i = 0,1, 2,. . ., 

ai = qiai-l + ai-2= qi(ri-la + si-lb) +(ri>2a + Si12b) 

= (qiri-l + ri-2)a +(qisi-l + si-2)b = ria + sib. 
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One can then verify the following formulas for i = 0,1, 2,..., 
i i 

deg(ri)= E deg(qh), deg(si)= E deg(qh) = deg(a) - deg(ai-1), 
h=l h=0 

and ri2sil - rilSi-2= (-1)i. Now let i be the least integer > 0 such that 
deg(a1) < (m + g)/2. Then deg(sj) = m - deg(ai-1) < m - (m + g)/2; hence 

deg(sj) < (m - g - 1)/2. Put c = aj, d = si, and X = ri. With these choices c = Xa 
+ db, where the degrees of c and d are as specified above. 

We now describe the reduction algorithm. Suppose D = div(a, b) is a divisor of 
(arbitrary) degree m. The following algorithm will reduce D in one step. 

(R1) Use the Euclidean algorithm, as above, to obtain c and d. 
(R2)Put a2 = gcd(c, d) (= gcd(a, d)) and define a1 = a/a2, c1 = c/a2, and 

d, = d/a2. 

(R3) Put a3 = (c1 - df2f )/a1 and compute d' so that dd' 1 (mod a3). 
(R4)Let E be the divisor which is the sum of E1 = div(a3, -d'c1) and E2= 

div(a2, b) (computed using the composition algorithm). 
Then E is reduced and equivalent to D. 

We now prove correctness. First c1 = Xa1 + bd1. Then D = D1 + E2, where 

Di = div(a1, b) = gcd((a1), (b - v)) and E2 = div(a2, b) = gcd((a2), (b - v)). 
Since gcd(a1, d1) = 1, we have D1 = gcd((a1), (d1b - d1v)) = gcd((a1), (c1 - d1v)). 
Thus D1 -D3 (mod P), where D3 = (C2 - dj1f - = -gcd((a3), (c1 - dlv)). 
Since gcd(c1, d1) = 1 and gcd(a3, d1) = 1, there exists a polynomial d' such that 
d'd1 --1 (moda3) and D3 = -gcd((a3), (d'c1 + v)) = E1. Thus E D (mod P). 
Put n = deg(a2). Then 

deg(a3) = max(2 * deg(c1), 2 * deg(d1) + deg(f)) - deg( a1) 

< max(m + g - 2 - n, m + g - 2 * n) -(m - n) = g - n. 

Thus deg(E1) < g - n and deg(E2) = n. Hence deg(E) < g and E is reduced. 
The number of steps required by this algorithm is determined by the number of 

steps required to compute the gcd of two polynomials of degree m. Hence, if 
classical algorithms are used, then this reduction takes O(m2) steps, while if modern 
"fast" algorithms are used, then it takes O(m(log M)2) steps, i.e., asymptotically the 
same number of steps as is taken by the composition algorithm when applied to two 
divisors of degree m. 

In [8] Seysen describes a simplification of the classical reduction algorithm. The 
number of steps it requires is of the same order of magnitude as the classical 
reduction algorithm. However, as is often the case for algorithms which are asymp- 
totically faster, in "small" cases (i.e., when the genus is small) his algorithm will be 
preferable to the asymptotically faster algorithm described here. 
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